
μ0

ℚ

ℙθ
μ1

Goal: Learning non-gradient field dynamics by solving Schrödinger 
bridge problem with non-zero drift reference process

ℙ* = arg minθ[KL(ℙθ ∥ ℚ) : ℙ0 = μ0, ℙ1 = μ1]
Schrödinger Bridge Problem (SB) Can we solve SB 

guided by non-zero 
drift ref. prior ?ℚ

Zero drift SB: Models straight paths

Particle Evolution

Zero reference drift

Brownian Bridge
dXt = vt,θ(Xt) dt + gt dBt

dXt = gt dBt

ℚt( ⋅ ∣ x0, x1) = 𝒩(xt; tx1 + (1 − t)x0, t(1 − t)σ2)

Particle Evolution Neural Bridge
dXt = vt,θ(Xt) dt + gt dBt

Non-zero drift SB: Models curly paths

Qη,t = ft,η(xt,η ∣ x0, x1) dt + gt dBt

f*η = min
η ∫ 𝔼ℙt[ 1

2
ft,η(xt) − ft(xt)

2

2] ℚt( ⋅ ∣ x0, x1) = 𝒩(xt; μt,ν, t(1 − t)σ2)

Curly-FM: Modeling cyclical trajectories in systems guided by 
non-zero reference process prior

Traditional flow-based models such as Conditional Flow Matching cannot 
capture periodic patterns. Curly-FM learns non-gradient field trajectories ✅

Algorithm 1: Learning neural path interpolants

Algorithm 2: Learning transport plan and coupling
κ(xt, x0) = μt,η − xi

0
2
/

N

∑
i=1

μt,η − xi
0

2
xt = tx1 + (1 − t)x0 + t(1 − t)φt,η(x0, x1)

Neural Interpolant Kernel Velocity Estimate

Compute cost c(x0, x1) c(x0, x1) = ∫
1

0

∂μt,η

∂t
− ft(μt,η)

2

2
dt

π*(μ0, μ1) = arg minπ∈Π(μ0⊗μ1) ∫ c(x0, x1) dπ(x0, x1)
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Figure 2: Visualization of ground truth data and vectorfield (left), OT-CFM predicted trajectories (center), and
CURLY-FM predictions (right). Curly fits the vortex much better than OT-CFM.

Table 2: Quantitative metrics on left out test timepoints for oceans. → numbers taken from Shen et al. [2025]
Metric Method t2 t4 t6 t8

EMD1

OT-CFM 0.148 ± 0.004 0.227 ± 0.008 0.191 ± 0.012 0.250 ± 0.018
MFM 0.107 ± 0.014 0.056 ± 0.014 0.052 ± 0.011 0.070 ± 0.021
Vanilla-SB→ 0.270 ± 0.058 0.300 ± 0.056 0.420 ± 0.056 0.410 ± 0.048
SBIRR Shen et al. [2025]→ 0.073 ± 0.020 0.072 ± 0.012 0.120 ± 0.029 0.094 ± 0.023
CURLY-FM 0.019 ± 0.003 0.045 ± 0.005 0.027 ± 0.001 0.030 ± 0.006

Cos. Dist.
OT-CFM 0.229 ± 0.004 0.121 ± 0.008 0.034 ± 0.005 0.067 ± 0.007
MFM 0.179 ± 0.010 0.011 ± 0.001 0.002 ± 0.001 0.004 ± 0.002
CURLY-FM 0.231 ± 0.004 0.017 ± 0.001 0.002 ± 0.000 0.002 ± 0.000

L2 cost
OT-CFM 0.167 ± 0.004 0.144 ± 0.014 0.095 ± 0.005 0.250 ± 0.023
MFM 0.203 ± 0.011 0.067 ± 0.011 0.101 ± 0.015 0.141 ± 0.018
CURLY-FM 0.151 ± 0.004 0.098 ± 0.001 0.135 ± 0.010 0.178 ± 0.017

and also outperforms the previous state-of-the-art SBIRR [Shen et al., 2025] on the EMD metric.
Moreover, we note that CURLY-FM is computationally fast and achieves these results in minutes
compared to 4hrs for the simulation-based SBIRR. These findings are also substantiated in fig. 2,
where we see trajectories that look more natural at modeling periodic behavior than OT-CFM.

4.3 Experiments on Single-Cell Data

(a) RNA-Velocity Field (b) Cell Cycles
Figure 3: Ground truth data.

To show that CURLY-FM is effective in learning
dynamic behavior in single-cell data, we leverage
two biologically rich datasets consisting of cell
cycles in human cell fibroblasts [Riba et al., 2022]
and erythroblast development in mouse [Pijuan-Sala
et al., 2019]. We aim to learn cell state trajectories
and development paths considering the respective
RNA-velocity fields, providing information about
cell cycling, lineage bifurcation, and transcriptional dynamics.
Cell cycle dynamics in human fibroblasts. We study the nature of cell cycling in human fibroblasts
and reconstruct cyclical patterns in spliced-unspliced RNA space for single genes. We leverage RNA-
velocities in figure 3a to construct cell state transition paths in figure 3 by estimating RNA velocity
field between marginals using k-nn algorithm. Further dataset details are included in §E.1. Figure 4
shows learned velocity fields vt,ω(xt) and trajectories ωt,ω(xt) between cell cycle distributions at
t = 0 and t = 1. In table 3, we show results on the trajectory inference task comparing CURLY-FM to
CFM, OT-CFM, and TrajectoryNet. Given the underlying cell cycle process, the aim is to learn circular
trajectories resulting from a divergence-free velocity field. While traditional methods are successful
in generating end points near ground truth, they fail at learning cyclic patterns, as shown in figures 4f.
Our results show that considering a non-zero reference field and velocity inference captures
non-gradient dynamics in data. Figure 4a and fig. 4d show learned behavior using CURLY-FM. We
observe that the trajectory ωt,ω(xt) inferred with CURLY-FM closely matches expected cycling
patterns in the fibroblast dataset, in contrast to trajectories inferred using CFM and OT-CFM. This

7
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across single-cell data, ocean currents, and turbulent flows

Metric Method t2 t4 t6 t8

Cos. Dist. MFM 0.179 ± 0.010 0.011 ± 0.001 0.002 ± 0.001 0.004 ± 0.002
CURLY-FM 0.231 ± 0.004 0.017 ± 0.001 0.002 ± 0.000 0.002 ± 0.000

Metric Method d = 2 d = 10 d = 20

Cos. Dist. OT-CFM 0.800 ± 0.309 1.008 ± 0.039 0.978 ± 0.125
CURLY-FM 0.295 ± 0.040 0.300 ± 0.058 0.249 ± 0.024

Table 18: GSBM loss comparison
Method Cos. Dist. ↓ L2 ↓ W2 ↓
GSBM (our loss) 0.075 ± 0.017 0.134 ± 0.030 0.248 ± 0.045
GSBM (6a) 0.083 ± 0.037 0.134 ± 0.029 0.201 ± 0.058
CURLY-FM 0.070 ± 0.001 0.107 ± 0.003 0.052 ± 0.004

H.3.2 Metric Flow Matching

For completeness of our analysis, we additionally report results for Metric Flow Matching (MFM) [Ka-
puśniak et al., 2024]. MFM introduces a geometric bias by enforcing interpolations that remain
close to the underlying data manifold, effectively learning smooth geodesic paths that reflect intrinsic
geometric structure. The two-stage learning strategy in CURLY-FM is directly adapted from MFM —
replacing the manifold-constrained interpolations with regression against the reference non-gradient
dynamics. In other words, CURLY-FM can be viewed as introducing an alternative inductive bias
on trajectories: whereas MFM constrains paths to lie on the manifold defined by data, CURLY-FM
enforces a bias on velocities, aiming to learn reference-consistent vector fields.
Since the core algorithmic structure of CURLY-FM (Algorithm 1) mirrors that of MFM, the two for-
mulations are in fact compatible and can be combined—leveraging manifold-constrained interpolants
together with velocity-based biases. We leave this promising direction for future work.

I Poster tables
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Figure 5: Visualization of ground truth data and vectorfield (left), OT-CFM predicted trajectories
(center) and CURLY-FM predictions (right). Curly fits the ground truth much better than OT-CFM.

Table 5: Quantitative results for the CFD trajectory inference task. Metrics are reported on held-out particles
from the test set for all marginals. Error bars show standard deviation.

Method Cos. Dist. ↓ MSE ↓ Prec.@5 ↑ Prec.@10 ↑ Prec.@25 ↑
CFM 0.254 ± 0.003 0.085 ± 0.002 0.079 ± 0.004 0.164 ± 0.006 0.337 ± 0.016
OT-CFM 0.248 ± 0.011 0.095 ± 0.001 0.303 ± 0.002 0.388 ± 0.004 0.496 ± 0.001
CURLY-FM 0.189 ± 0.027 0.095 ± 0.003 0.489 ± 0.010 0.522 ± 0.009 0.628 ± 0.010

4.4 Experiments on Computational Fluid Mechanics Data

We evaluate CURLY-FM on a particle-based PDE dataset generated by a Lagrangian solver. Unlike
grid-based (Eulerian) methods, Lagrangian approaches discretize the fluid as a set of particles
that move with the flow. These particles evolve under the dynamics of the PDE which provides
the particles’ positions over time; other quantities of interest, such as velocity or energy, are then
computed from these positions. We use data from LagrangeBench [Toshev et al., 2023], specifically
the two-dimensional decaying Taylor-Green vortex (2DTGV) dataset(see §F).
In table 5, we report quantitative results on left-out particles for each marginal from a test set. We
evaluate performance using (i) the cosine distance between the learned velocity field and the reference
field; (ii) mean squared error (MSE) between the predicted particle positions at marginal t+1 and the
ground truth positions, using the known coupling (ordering) between particles across marginals; and
(iii) precision@k, measuring how often the predicted position is among the k nearest neighbors of the
corresponding ground truth particle. CURLY-FM outperforms baselines in terms of cosine distance
and precision@k while matching or outperforming the baseline methods on MSE. The smaller cosine
distance for CURLY-FM shows that CURLY-FM produces velocity fields that better align with the
reference field. Equal or lower MSE paired with higher precision@k shows that CURLY-FM more
accurately recovers the true particle coupling and generates more faithful trajectories (c.f. fig. 10).

4.5 Further analysis of CURLY-FM performance

On higher stochasticity. We extend our discussion in section 3.1 on stochasticity levels ω
to consider an ablation where ω > 0. Despite our work being motivated in the little to no
stochasticity regime, we demonstrate that considering ω > 0 does not impact CURLY-FM efficiency.

Table 6: Ablation on stochasticity ω.
ω Cos. Dist. ↓ L2 ↓ W2 ↓
0.01 0.061 ± 0.003 0.141 ± 0.009 0.028 ± 0.066
0.10 0.062 ± 0.002 0.145 ± 0.011 0.066 ± 0.008
1.00 0.145 ± 0.009 0.474 ± 0.058 0.871 ± 0.048

We find, similar to previous work [Tong et al.,
2024b], low values of ω perform the best on
all metrics. As a result, we recommend setting
ω to zero unless some reference ω value is
known. Therefore, all of our experiments
are performed under ω = gt = 0 assumption.
We consider ocean currents dataset and find that larger stochasticity monotonically decreases
performance on our tasks, thus justifying our choice of ω for our empirical work.
On computational efficiency. We further provide the computational cost in wall clock time for
TrajectoryNet, SBIRR and CURLY-FM in table 7 (see §H.2 for further baseline comparison). We
observe that CURLY-FM completes the Ocean currents problem in minutes with higher accuracy
in trajectory and velocity field inference task, while SBIRR and TrajectoryNet are in the order of
multiple hours and unlike CURLY-FM are simulation-based.
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Metric Method d = 2 d = 20 d = 50

Cos. Dist. MFM 0.014 ± 0.001 0.495 ± 0.001 0.494 ± 0.000
CURLY-FM 0.009 ± 0.000 0.488 ± 0.001 0.489 ± 0.000
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μt,η := ∫
t

0
fs,η(μs) ds = tx1 + (1 − t)x0

+t(1 − t)φt,η(x0, x1)

Non-zero reference drift
dXt = ft(Xt)dt + gt dBt

is quantified in table 3, where we can see the cosine distance to the reference field is significantly
lower for CURLY-FM.

Figure 4: Vectorfields (top) and trajectory traces (bottom) learned using CURLY-FM (left) OT-CFM
(center) CFM (right). CURLY-FM is the only method able to learn the cell cycle.
Table 3: Quantitative results for cell cycle trajectory inference task. We report the mean result for a metric with
standard deviation over three seeds. CURLY-FM performs the best across matching inferred velocity field to the
reference process (cosine distance) while maintaining comparable predictive quality.
Datasets → d = 2 d = 10 d = 20

Algorithm ↑ W2 ↑ Cos. Dist ↑ W2 ↑ Cos. Dist ↑ W2 ↑ Cos. Dist ↑
CFM 0.294 ± 0.030 1.065 ± 0.080 0.606 ± 0.059 1.001 ± 0.037 1.227 ± 0.013 1.007 ± 0.010
OT-CFM 0.248 ± 0.030 0.800 ± 0.309 0.586 ± 0.041 1.008 ± 0.039 1.183 ± 0.015 0.978 ± 0.125
TrajectoryNet 0.531 ± 0.021 1.077 ± 0.031 0.853 ± 0.059 0.979 ± 0.064 – –

CURLY-FM (Ours) 1.199 ± 0.177 0.295 ± 0.040 0.930 ± 0.024 0.300 ± 0.058 1.261 ± 0.077 0.249 ± 0.024

Reconstructing cell differentiation in mouse Erythroid development.. Mouse erythroid cells
develop in a curved trajectory over time. We show that CURLY-FM can adhere to this developmental
path purely based on velocity data for the first time. Earlier works have used manifold-based penalties
to follow curved structures. We show that this is no longer necessary with clever usage of velocity
information. We observe 9,815 erythroid cells undergoing differentiation and partition the data into
three temporal snapshots, withholding the central marginal to assess trajectory inference (see §E.2).

Table 4: Erythroid dataset results across dimension.
Metric OT-CFM MFM CURLY-FM (Ours)

Dimension d = 2
Cos. Dist 0.146 ± 0.001 0.014 ± 0.001 0.009 ± 0.000
L2 2.704 ± 0.019 1.999 ± 0.014 1.663 ± 0.293
W2 0.646 ± 0.006 0.269 ± 0.004 0.369 ± 0.090

Dimension d = 20
Cos. Dist 0.489 ± 0.001 0.495 ± 0.001 0.488 ± 0.001
L2 (↓103) 1.885 ± 0.020 1.627 ± 0.040 1.721 ± 0.035
W2 6.103 ± 0.074 4.855 ± 0.052 6.124± 0.027

Dimension d = 50
Cos. Dist 0.490 ± 0.000 0.494 ± 0.000 0.489 ± 0.000
L2 (↓103) 2.215 ± 0.022 1.971 ± 0.023 2.045 ± 0.073
W2 7.969 ± 0.029 6.727 ± 0.022 7.729 ± 0.046

We visualize trajectories in figure 5 showing
that CURLY-FM clearly follows the devel-
opmental pathway of mouse erythroid cells,
whereas OT-CFM fails to capture dynamics
between marginals. To assess CURLY-FM
performance, we measure cosine-distance and
L2 norm between learnt and ground truth ve-
locities as well as W2 distance between points
on left-out marginal. Our quantitative results
show that CURLY-FM outperforms OT-CFM
at reconstructing the underlying RNA-velocity
field and cell trajectories in majority of se-
lected dimensions. MFM continues to achieve
lower W2, indicating stronger adherence to the underlying manifold. Conversely, CURLY-FM attains
superior cosine similarity to the ground-truth velocity field, consistent with its objective emphasizing
faithful velocity alignment which contributes to a challenge exactly matching end-point marginals.

4.4 Experiments on Computational Fluid Mechanics Data

We evaluate CURLY-FM on a particle-based PDE dataset generated by a Lagrangian solver. Unlike
grid-based (Eulerian) methods, Lagrangian approaches discretize the fluid as a set of particles
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Metric Method d = 2 d = 20 d = 50

Cos. Dist. MFM 0.014 ± 0.001 0.495 ± 0.001 0.494 ± 0.000
CURLY-FM 0.009 ± 0.000 0.488 ± 0.001 0.489 ± 0.000

Metric Method d = 20

Cos. Dist. OT-CFM 0.978 ± 0.125
CURLY-FM 0.249 ± 0.024

25

(a) Cell Rotations ω (b) Cell Phases

Figure 7: Human Fibroblasts Dataset.

(a) Cell Stages (b) RNA Velocity Field

Figure 8: Mouse Erythroid Dataset.

Figure 9: Trajectories of particles for CFD for
different methods.

Figure 10: Learned CFD velocity field for CFM
(left), OT-CFM (middle), and CURLY-FM (right).

Filtering RNA Velocities. To address tail-effects of noisy single-cell data, we filter RNA velocities
by down-weighting distant neighbors in the k-NN estimate at xt and injecting small Gaussian noise.
We construct new estimate f→

t by interpolating between k-nn velocity estimate ft and noise such that
f→
t = (1 → wω(xt)) ↑ ft + wω(xt) ↑ N (0, 0.1). The weight wω(xt) ↓ [0, 1] is given by a sigmoid

of the distance between the k-NN distance and a threshold hyperparameter ω, so that larger distances
yield larger wω(xt) and thus stronger penalization of distant neighbors.

F Computational Fluid Dynamics Dataset

Experimental details for CFD. We conducted our CFD experiments using the two-dimensional
decaying Taylor-Green vortex (2DTGV) dataset provided by LagrangeBench [Toshev et al., 2023].
We subsampled 2000 particles and considered five equispaced marginals (snapshot distributions
over particle positions). The goal was to perform trajectory inference from unordered population
snapshots. Since instantaneous velocity is not directly observed, we constructed the reference drift
field using finite differences. This aligns with how derived physical quantities—such as velocity or
energy—are computed from particle positions in Lagrangian PDE solvers.
We considered a dataset split of [80%, 20%] across the train and test sets, respectively. For the 2000
particles, this resulted in 1600 being used for training and 400 for testing. All other hyperparameters
of CURLY-FM were the same as for the other experiments.

F.1 Ablations on CFD

Figure 9 illustrates the trajectories of 25 particles under CFM, OT-CFM, and CURLY-FM. Both CFM
and OT-CFM tend to produce straight, relatively short paths, most notably in the case of OT-CFM,
indicating a preference for minimal transport effort. In contrast, CURLY-FM learns longer, more
intricate trajectories that better resemble the expected fluid dynamics.
Figure 10 visualizes the velocity fields inferred by each method. While CFM and OT-CFM yield
smoother and simpler velocity patterns, CURLY-FM captures a richer and more structured field. This
complexity reflects closer alignment with the reference field and suggests improved physical fidelity.
The resulting velocity field from CURLY-FM more accurately models the underlying dynamics,
adhering to both data-driven transport and the governing reference flow.
Tables 10 and 11 show CURLY-FM without coupling and for different number of times used to
evaluate the coupling cost, respectively. In particular, table 10 shows that the coupling based
on minimizing the kinetic energy only marginally improves performance for CFD experiments.
Furthermore, table 11 shows that there is little to no benefit in using additional times to approximate
the coupling cost in algorithm 2.
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Metric Method d = 2 d = 20 d = 50

Cos. Dist. MFM 0.014 ± 0.001 0.495 ± 0.001 0.494 ± 0.000
CURLY-FM 0.009 ± 0.000 0.488 ± 0.001 0.489 ± 0.000

Metric Method d = 20

Cos. Dist. OT-CFM 0.978 ± 0.125
CURLY-FM 0.249 ± 0.024

Method Cos. Dist. ↓
OT-CFM 0.248 ± 0.011
CURLY-FM 0.189 ± 0.027

25
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xt
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Metric Method t2 t4 t6 t8

Cos. Dist. MFM 0.179 ± 0.010 0.011 ± 0.001 0.002 ± 0.001 0.004 ± 0.002
CURLY-FM 0.231 ± 0.004 0.017 ± 0.001 0.002 ± 0.000 0.002 ± 0.000

Metric Method d = 2 d = 10 d = 20

Cos. Dist. OT-CFM 0.800 ± 0.309 1.008 ± 0.039 0.978 ± 0.125
CURLY-FM 0.295 ± 0.040 0.300 ± 0.058 0.249 ± 0.024

Table 18: GSBM loss comparison
Method Cos. Dist. ↓ L2 ↓ W2 ↓
GSBM (our loss) 0.075 ± 0.017 0.134 ± 0.030 0.248 ± 0.045
GSBM (6a) 0.083 ± 0.037 0.134 ± 0.029 0.201 ± 0.058
CURLY-FM 0.070 ± 0.001 0.107 ± 0.003 0.052 ± 0.004

H.3.2 Metric Flow Matching

For completeness of our analysis, we additionally report results for Metric Flow Matching (MFM) [Ka-
puśniak et al., 2024]. MFM introduces a geometric bias by enforcing interpolations that remain
close to the underlying data manifold, effectively learning smooth geodesic paths that reflect intrinsic
geometric structure. The two-stage learning strategy in CURLY-FM is directly adapted from MFM —
replacing the manifold-constrained interpolations with regression against the reference non-gradient
dynamics. In other words, CURLY-FM can be viewed as introducing an alternative inductive bias
on trajectories: whereas MFM constrains paths to lie on the manifold defined by data, CURLY-FM
enforces a bias on velocities, aiming to learn reference-consistent vector fields.
Since the core algorithmic structure of CURLY-FM (Algorithm 1) mirrors that of MFM, the two for-
mulations are in fact compatible and can be combined—leveraging manifold-constrained interpolants
together with velocity-based biases. We leave this promising direction for future work.
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Algorithm 1 Training algorithm for neural path interpolant network
Require: Marginals µ0(x0) and µ1(x1), network ωω , reference drift ft,ω
1: while Training do
2: Sample (x0, x1, t) → µ0(x0)µ1(x1)U(0, 1)
3: µt,ω = (1↑ t)x0 + tx1 + t(1↑ t)ωt,ω(x0, x1)

4: εµt,ω

εt = x1 ↑ x0 + t(1↑ t)
εϑt,ω(x0,x1)

εt + (1↑ 2t)ωt,ω(x0, x1)

5: L(ε) =
∥∥∥ εµt,ω

εt ↑ ft,ω(µt,ω)
∥∥∥
2

2
6: ε ↓ Update(ε,↔ωL(ε))

return ωt,ω

Algorithm 2 Marginal Score and Flow Matching
Require: Marginals ϑ0(x0) and ϑ1(x1), network ωω , vector field network vt,ϖ .
1: while Training do
2: Sample (x0, x1, tij) → ϑ0(x0)ϑ1(x1)U(0, 1)

3: Cij
ω (xi

0, x
j
1) = Et

[∥∥∥ εµt,ω

εt ↑ ft,ω(µt,ω)
∥∥∥
2

2

]

4: x0, x1 → ϖ(x0, x1) ↓ OT(x0, x1, Cω)
5: t → U(0, 1), ϱ → N (0, 1)
6: L(ς) = Lflow(ς) + Lscore(ς)
7: ς ↓ Update(ς,↔ϖL(ς))

return vϖ
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xt,ω = µt,ω + ωε
√

t(1 → t) with ε ↑ N (0, 1) [Tong et al., 2024b],

Lscore(ϑ) = Et→U [0,1],(x0,x1)→ε(x0,x1)

[
1

2
↓ϖtst,ϑ(xt,ω) + ε↓22

]
.

In totality, the combined loss is given by thus L(ϑ) = Lflow(ϑ) + Lscore(ϑ).

Algorithm 1 Training algorithm for neural path
interpolant network
Require: Marginals ω0(x0) and ω1(x1), network εω ,

reference drift ft,ω
1: while Training do
2: Sample (x0, x1, t) → ω0(x0)ω1(x1)U(0, 1)
3: µt,ω = (1↑t)x0+tx1+t(1↑t)εt,ω(x0, x1)

4: εµt,ω

εt = x1↑x0+t(1↑t)
εϑt,ω(x0,x1)

εt +(1↑
2t)εt,ω(x0, x1)

5: L(ϑ) =
∥∥∥ εµt,ω

εt ↑ ft,ω(µt,ω)
∥∥∥
2

2
6: ϑ ↓ Update(ϑ,↔ωL(ϑ))

return εt,ω

Algorithm 2 Marginal Score and Flow Matching
Require: Marginals ω0(x0) and ω1(x1), network εω ,

vector field network vt,ϖ .
1: while Training do
2: Sample (x0, x1, tij) → ω0(x0)ω1(x1)U(0, 1)

3: Cij
ω (xi

0, x
j
1) = Et

[∥∥∥ εµt,ω

εt ↑ ft,ω(µt,ω)
∥∥∥
2

2

]

4: x0, x1 → ϖ(x0, x1) ↓ OT(x0, x1, Cω)
5: t → U(0, 1), ϱ → N (0, 1)
6: L(ς) = Lflow(ς) + Lscore(ς)
7: ς ↓ Update(ς,↔ϖL(ς))

return vϖ

Remark 1. We highlight that while L(ϑ) seeks to match vt,ϑ to velocity of the neural
path-interpolant ϖµt,ω

ϖt and the optimal velocity v↑t ↔= ft,ω since the reference process Qω does
not necessarily transport ϱ0 to ϱ1. More precisely, Qω does not have constraints at the endpoints,
that Q0 = ϱ0 and Q1 = ϱ1, which are required from our learned process Pϑ and its drift vt,ϑ.

4 Experiments

We investigate the application of CURLY-FM on multiple applications which exhibit non-gradient
field dynamics including a simple toy example, an ocean currents modeling application, a
computational fluid mechanics dataset, and an application to single-cell trajectory inference. We
benchmark CURLY-FM against both simulation-free flow matching approaches: Conditional flow
matching (CFM) [Liu et al., 2023b, Peluchetti, 2023, Lipman et al., 2023, Albergo et al., 2023],
optimal transport conditional flow matching (OT-CFM) [Tong et al., 2024a] and when possible
metric flow matching [Kapuśniak et al., 2024] which cannot model non-zero drift dynamics, as
well as simulation-based methods in TrajectoryNet and SBIRR [Shen et al., 2025] which can model
non-zero drift dynamics but are much slower [Tong et al., 2020] and numerically unstable.
We evaluate CURLY-FM using metrics both on held out samples (2-Wasserstein (W2)) as well as
metrics which directly measure how well the learned drift fϑ field matches the reference drift (Cosine
distance and L2 cost). We note that in many cases, it is not possible to match the reference drift
exactly as the model is forced to match the marginals.

4.1 Synthetic Experiments

We start our experimental study of learning cyclical patterns from population-level observed popula-
tions by considering a synthetic example. We construct source and target distributions on asymmetri-
cally arranged circles ( fig. 1a), each with higher particle population density on one side. Given
a circular reference velocity field ft(xt, ς) with constant rotational speed, the goal is to learn the
velocity-field vt,ϑ(xt) and trajectories φt,ϑ(xt) for t ↗ [0, 1]. We find that previous flow matching
methods with zero-reference field f↑

t result in straight paths between source and target distributions,
thereby failing to capture cycling patterns in the underlying data (see 1b and fig. 1c).

4.2 Modeling Ocean Currents

We model ocean currents in the Gulf of Mexico using a resolution of 1 km of bathymetry data from
HYbrid Coordinate Ocean Model (HYCOM), which allows us to obtain a reference field. We follow
the data processing pipeline of Shen et al. [2025] and observe 111 particles per time-point (see §D
for exact dataset details). We report our quantitative results in section I and observe that across the
left-out time points, CURLY-FM obtains the best results for the majority of the reported metrics,
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5 Related Work

Flow matching. Flow matching [Lipman et al., 2023], also known as rectified flows [Liu, 2022, Liu
et al., 2023b] or stochastic interpolants [Albergo and Vanden-Eijnden, 2023, Albergo et al., 2023],

Table 7: Compute cost.
Method Hours

TrajectoryNet 7.44
SBIRR 4.67
CURLY-FM (Ours) 0.06

has emerged as the default method for training continuous normalizing
flow (CNF) models [Chen et al., 2018, Grathwohl et al., 2019]. However,
FM can lead to unnatural dynamics less, and therefore many works
attempt to derive methods for using minimum energy [Tong et al., 2024a,
Pooladian et al., 2023] and more flexible conditional paths [Neklyudov
et al., 2024, Kapuśniak et al., 2024].
Schrödinger bridges with deep learning. To tackle the Schrödinger bridge problem in high
dimensions many methods propose simulation-based [De Bortoli et al., 2021b, Chen et al., 2022,
Koshizuka and Sato, 2023, Liu et al., 2022] and simulation-free [Shi et al., 2024, Tong et al., 2024b,
Pooladian and Niles-Weed, 2023, Liu et al., 2023a] set-ups with various additional components incor-
porating variable growth rates [Zhang et al., 2025, Pariset et al., 2023, Sha et al., 2024], stochasticity,
and manifold structure [Huguet et al., 2022] proposed based on neural ODE and neural SDE [Li
et al., 2020, Kidger et al., 2021] frameworks. However, very few methods are able to incorporate
approximate velocity data, and either match marginals using simulation [Tong et al., 2020], or do not
attempt to match marginals [Qiu et al., 2022]. Finally, Schrödinger bridges with non-zero reference
field have also been considered by Bartosh et al. [2024] and concurrently by Bartosh et al. [2025]
and Shen et al. [2025], however, they do not employ a two-stage simulation-free approximation as
CURLY-FM. We include further details on related work comparison in appendix §B.
RNA-velocity methods on discrete manifolds. A common strategy to regularize and interpret
RNA-velocity [La Manno et al., 2018, Bergen et al., 2020] is to restrict it to a Markov process on
a graph of cells representing a discrete manifold or compute higher-level statistics on it [Qiu et al.,
2022]. However, these approaches are not equipped to match the marginal cell distribution over time.
CURLY-FM can be seen as a method that unites these approaches with marginal-matching approaches.

6 Conclusion

In this work, we introduced CURLY-FM, a method capable of learning non-gradient field dynamics
by solving a Schrödinger bridge problem with a non-zero reference process drift. In contrast to
prior work, CURLY-FM is simulation-free, greatly improving numerical stability and efficiency.
We showed the utility of this method in learning more accurate dynamics in a cell cycle system
with known periodic behavior, computational fluid dynamics under Lagrangian solvers, and
ocean currents. CURLY-FM opens up the possibility of moving beyond modeling population
dynamics with simulation-free training methods and towards reconstructing the underlying governing
dynamics [Xing, 2022]. Nevertheless, CURLY-FM is currently limited in its ability to discover the
underlying dynamics by accurate inference of the reference field, which is an inherently difficult
problem, especially over longer timescales. Exciting directions for future work involve additional
verification of trajectories through lineage tracing [McKenna and Gagnon, 2019, Wagner and Klein,
2020], and improved modeling across non-stationary populations with the additional incorporation
of unbalanced transport or multiomics datatypes [Baysoy et al., 2023].
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